B.Sc. 4th Semester (Honours) Examination, 2020-21 PHYSICS

Course ID: 42413 Course Code: SH/PHS/403/C-10

Course Title: Analog Systems and Applications (T10)

Time: 1 Hour 15 Minutes Full Marks: 25

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Section-I

1. Answer any five of the following questions:

 $1\times5=5$

- (a) What do you mean by quiescent point of transistor amplifier?
- (b) If α is 0.99 in case of a bipolar junction transistor, find the value of β .
- (c) The intrinsic carrier density of a pure semiconductor is 10^{20} m⁻³ at 300 K. The hole concentration decreases to 10^{18} m⁻³ upon doping with donor type impurities. Estimate the value of electron density.
- (d) If the reverse saturation current in a semiconductor diode is found 10 μ A and 105 μ A at 300 K and 330 K, respectively, find the band gap of the semiconductor.
- (e) What do you mean by positive and negative feedback in amplifiers?
- **(f)** Mention one important advantage of a FET over a conventional bipolar junction transistor.
- (g) Explain the static and dynamic resistance of a semiconductor diode.
- (h) How does Hartley oscillator differ from Colpitts's oscillator?

Section-II

2. Answer any *two* of the following questions:

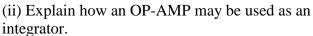
 $5 \times 2 = 10$

(a) The n-p-n transistor is connected in CE configuration in which collector supply is 8V and voltage drop across resistance R_L connected in the collector circuit is 0.5V. The value of R_L = 800ohm. If α = 0.96, determine collector emitter voltage and base current.

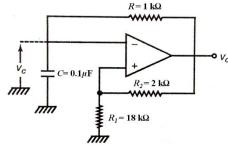
P.T.O

- (b) "The barrier potential of a p-n junction diode cannot be measured simply by placing a voltmeter across the diode terminals"- explain very briefly. Derive an expression of the width of depletion region across a p-n junction, in terms of impurity concentrations. [2+3]
- (c) (i) What is doping? (ii) A sample of silicon has electron and hole mobilities of 0.13 and 0.05 m²/V·s, respectively at 300 K. It is doped with phosphorous and aluminum with doping densities of 1.5×10²¹ m⁻³ and 2.5×10²¹ m⁻³, respectively. Estimate the conductivity of the doped silicon sample at 300 K. [1+4]
- (d) (i) An LED operates at 1.5 V and 5 mA in forward bias. Estimate the number of photons emitted per second assuming external efficiency of the LED is 75%. (ii) Distinguish between avalanche and Zener breakdown. [3+2]

Section-III


3. Answer any *one* of the following questions:

 $10 \times 1 = 10$


- (a) (i) What is a MOSFET? Draw a typical set of static drain characteristics and transfer characteristics of a MOSFET and explain?
 - (ii) Calculate the static and dynamic resistance of a p-n junction germanium diode if the room temperature is 27° C and reverse saturation current $I_s = 1 \mu A$ when a forward bias of 0.2V is applied. [(1+2+2)+5]
- (b) (i) Find the value of CMRR for an amplifier with two inputs from the information that the output is 2.01 mV when the inputs are $110 \mu V$

and 90 μ V, but output is 2 mV when inputs are 10 μV and -10 μV .

following circuit:

(iii) Calculate the frequency of oscillation for the

[3+3+4]